The role of ECoG magnitude and phase in decoding position, velocity, and acceleration during continuous motor behavior

نویسندگان

  • Jiri Hammer
  • Jörg Fischer
  • Johanna Ruescher
  • Andreas Schulze-Bonhage
  • Ad Aertsen
  • Tonio Ball
چکیده

In neuronal population signals, including the electroencephalogram (EEG) and electrocorticogram (ECoG), the low-frequency component (LFC) is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI) applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold) and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy) "copy" of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative LFC of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The trajectory of center of pressure during stance phase of gait in healthy males and females using pedar-X system

Introduction and Objectives. The trajectory of center of pressure (COP) during the stance phase of gait is considered as an important parameter in assessing of dynamic balance, foot and ankle function and effectiveness of shoe and orthotics. The aim of this study was to determine the COP trajectory during stance phase of gait in healthy males and females, by means of Pedar-X plantar pressure me...

متن کامل

Evaluation of Nonlinear Response of Structures to Near-Fault Ground Motions and the Comparison of Results with Near-Fault Simulated Records

Near-fault ground motions have caused very much damage in the vicinity of seismic sources during recent earthquakes. It is well known that under specific circumstances, intensive ground shakings near fault ruptures may be characterized by short-duration impulsive motions. This pulse-type motion is generally particular to the forward direction, where the fault rupture propagates towards the site...

متن کامل

Numerical investigation of variable uplift distribution at the level of landslide-induced acceleration at the concrete dam body crack position

The study of seismic behavior of concrete dams has been considered by many researchers due to the importance of dam safety during earthquakes. Because the destruction of these structures by earthquakes can have adverse economic and social effects. On the other hand, predicting the behavior of concrete dams during an earthquake is one of the most complex and difficult issues in structural dynami...

متن کامل

Decoding natural grasp types from human ECoG

Electrocorticographic (ECoG) signals have been successfully used to provide information about arm movement direction, individual finger movements and even continuous arm movement trajectories. Thus, ECoG has been proposed as a potential control signal for implantable brain-machine interfaces (BMIs) in paralyzed patients. For the neuronal control of a prosthesis with versatile hand/arm functions...

متن کامل

Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats

Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013